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The Lagrange theory of particle motion in the noninertial systems is applied to the
Foucault pendulum, isosceles triangle pendulum and the general triangle pendulum
swinging on the rotating Earth. As an analogue, planet orbiting in the rotating galaxy
is considered as the giant galactic gyroscope. The Lorentz equation and the Bargmann-
Michel-Telegdi equations are generalized for the rotation system. The knowledge of
these equations is inevitable for the construction of LHC where each orbital proton
“feels” the Coriolis force caused by the rotation of the Earth.
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1. INTRODUCTION

In order to reveal the specific characteristics of the mechanical systems in the
rotating framework, it is necessary to derive the differential equations describing
the mechanical systems in the noninertial systems. We follow the text of Landau
et al. (Landau et al., 1965).

Let be the Lagrange function of a point particle in the inertial system as
follows:

L0 = mv2
0

2
− U (1)

with the following equation of motion

m
dv0

dt
= −∂U

∂r
, (2)

where the quantities with index 0 correspond to the inertial system.
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The Lagrange equations in the noninertial system is of the same form as that
in the inertial one, or,

d

dt

∂L

∂v
= ∂L

∂r
. (3)

However, the Lagrange function in the noninertial system is not the same as
in Eq. (1) because it is transformed.

Let us first consider the system K ′ moving relatively to the system K with
the velocity V(t). If we denote the velocity of a particle with regard to system K ′

as v′, then evidently

v0 = v′ + V(t). (4)

After insertion of Eq. (4) into Eq. (1), we get

L′
0 = mv′2

2
+ mv′V + m

2
V2 − U. (5)

The function V2 is the function of time only and it can be expressed as the
total derivation of time of some new function. It means that the term with the total
derivation in the Lagrange function can be removed from the Lagrangian. We also
have:

mv′V(t) = mV
dr′

dt
= d

dt
(mr′V(t)) − mr′ dV

dt
. (6)

After inserting the last formula into the Lagrange function and after removing
the total time derivation we get

L′ = mv′2

2
− mW(t)r′ − U, (7)

where W = dV/dt is the acceleration the system K ′.
The Lagrange equations following from the Lagrangian (7) are as follows:

m
dv′

dt
= −∂U

∂r′ − mW(t). (8)

We see that after acceleration of the system K ′ the new force mW(t) appears.
This force is fictitious one because it is not generated by the internal properties of
some body.

In case that the system K ′ rotates with the angle velocity � with regard to
the system K , vectors v and v′ are related as (Landau et al., 1965)

v′ = v + � × r. (9)

The Lagrange function for this situation is (Landau et al., 1965 )

L = mv2

2
− mW(t)r − U + mv · (� × r) + m

2
(� × r)2. (10)
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The corresponding Lagrange equations for the last Lagrange function are as
follows (Landau et al., 1965):

m
dv
dt

= −∂U

∂r
− mW + mr × �̇ + 2mv × � + m� × (r × �) . (11)

We observe in Eq. (11) three so called inertial forces. The force mr × �̇ is
connected with the nonuniform rotation of the system K ′ and the forces 2mv × �

and m� × r × � correspond to the uniform rotation. The force 2mv × � is so
called the Coriolis force and it depends on the velocity of a particle. The force
m� × r × � is called the centrifugal force. It is perpendicular to the rotation axes
and the magnitude of it is m�ω2, where � is the distance of the particle from the
rotation axis.

Equation (11) can be applied to many special cases. We apply it first to
the case of the mathematical pendulum swinging in the gravitational field of the
rotating Earth. In other words, to the so called Foucault pendulum.

2. FOUCAULT PENDULUM

Foucault pendulum was studied by Léon Foucault (1819–1868) as the big
mathematical pendulum with big mass m swinging in the gravitational field of
the Earth. He used a 67 m long pendulum in the Panthéon in Paris and showed
the astonished public that the direction of its swing changed over time rotating
slowly. The experiment proved that the earth rotates. If the earth would not rotate,
the swing would always continue in the same direction.2

If we consider the motion in the system only with uniform rotation, then we
write equation (11) in the form:

m
dv
dt

= −∂U

∂r
+ 2mv × � + m� × r × �. (12)

In case of the big pendulum, the vertical motion can be neglected and at the
same time the term with �2. The motion of this pendulum is performed in the
horizontal plane xy. The corresponding equations are as follows (Landau et al.,
1965):

ẍ + ω2x = 2�zẏ, ÿ + ω2y = −2�zẋ, (13)

where ω is the frequency of the mathematical pendulum without rotation of the
Earth, or ω = 2π/T and (Landau et al., 1965): T ≈ 2π

√
l/g, where T is the period

of the pendulum oscillations, l is the length of the pendulum and g is the Earth
acceleration.

2 Author performed the experiment with the Foucault pendulum inside of the rotunda of the Flower
garden in Kroměřı́ž (Moravia, Czech Republic).
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After multiplication of the second equation of (13) by the imaginary number
i and summation with the first equation, we get:

ξ̈ + 2i�zξ̇ + ω2ξ = 0 (14)

for the complex quantity ξ = x + iy. For the small angle rotation frequency �z

of the Earth with regard to the oscillation frequency ω, �z << ω, we easily find
the solution in the form:

ξ = e−i�zt (A1e
iωt + A2e

−iωt ), (15)

or,

x + iy = e−i�zt (x0 + iy0), (16)

where functions x0(t), y0(t) are the parametric expression of the motion of the
pendulum without the Earth rotation. If the complex number is expressed in the
trigonometric form of (16), the �z is the rotation of the complex number x0 + iy0.
The physical meaning of Eq. (16) is, that the plane of the Foucault pendulum
rotates with the frequency �z with regard to the Earth.

3. THE TRIANGLE PENDULUM

The triangle pendulum is the analogue of the Foucault pendulum with the
difference that the pendulum is a rigid system composed from two rods forming
the triangle ABC. In the isosceles triangle it is AC = CB = l = const. The legs
AC = CB are supposed to be prepared from the nonmetal and nonmagnetic
material, with no interaction with the magnetic field of the Earth. Point C is a
vertex at which the pendulum is hanged. The vertex is realized by the very small
ball. Points A and B are not connected by the rod. The angle ACB = α.

To be pedagogical clear, let us give first the known theory of the simple
mathematical pendulum (Amelkin, 1987).

The energetical equation of the pendulum is of the form (ϕ is the deflection
angle from vertical, ϕ0 is the initial deflection angle from vertical):

mv2

2
− mgl cos ϕ = −mgl cos ϕ0, (17)

from which follows, in the polar coordinates with v = lϕ̇

ϕ̈ + g

l
sin ϕ = 0. (18)

We have for the very small angle ϕ that sin ϕ ≈ ϕ, x ≈ lϕ and it means that
from the last equation follows the equation for the harmonic oscillator

ẍ + g

l
x = 0. (19)
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The rigorous derivation of the period of pendulum follows from Eq. (17).
With v = ds/dt = ldϕ/dt , we get

l

2

(
dϕ

dt

)2

= g(cos ϕ − cos ϕ0). (20)

Then,

dt =
√

l

2g

dϕ√
cos ϕ − cos ϕ0

. (21)

For the period T of the pendulum, we have from the last formula:

T

4
=

√
l

2g

∫ ϕ0

0

dϕ√
cos ϕ − cos ϕ0

. (22)

Using relations cos ϕ = 1 − 2 sin2 ϕ/2, cos ϕ0 = 1 − 2 sin2 ϕ0/2, and substi-
tution sin ϕ/2 = k sin χ , with k = sin ϕ0/2, we get

dϕ = 2
√

k2 − sin2 χ/2√
1 − k2 sin2 χ

dχ (23)

and finally

T = 4

√
l

g

∫ π/2

0

dχ√
1 − k2 sin2 χ

, (24)

where the integral in the last formula is so called the elliptic integral, which cannot
be evaluated explicitly but only in the form of series.

Now, let us go back to the isosceles triangle pendulum, which differs from
the mathematical pendulum in such a way that it is a rotating system. We write
in the polar coordinates instead of the equation (18) the equation for the rotating
system which ia called the physical pendulum:

J ϕ̈ = −(
mi)ga sin ϕ, (25)

where J is the moment of inertia of the triangle pendulum with the determination

J = 
mil
2
i = 2ml2 (26)

and a is the distance of the center-of-mass to the axis of rotation, or,

a = l cos(α/2). (27)

It is easy to see the equation of motion is

ϕ̈ + (g/l) cos(α/2) sin ϕ = 0, (28)
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which has the limiting form

ϕ̈ + (g/l) cos(α/2)ϕ = 0, (29)

for the small deflection angles and it means that the frequency of oscillations is

ω =
√

g

l
cos(α/2). (30)

For α = 0 we get the frequency of the mathematical pendulum. It is evident
that the triangle pendulum behaves on the rotating Earth as the Foucault pendulum
and it can be used as the table pendolino experiment for the demonstration of the
Earth rotation.

The triangle pendulum with equal sides can be generalized to the situation
with AC = l1, BC = l2 and with masses m1,m2. Then, it the equation of motion
of such generalized triangle pendulum is equation (25) with J = m1l

2
1 + m2l

2
2 and

with a being given by the cosine theorem in the triangle ABC (the angle CAB =
α1, the angle ABC = α2)

a2 = l2
1 + x2

1 − 2l1x1 cos α1 = l2
2 + x2

2 − 2l2x2 cos α2, (31)

where x1, x2 can be determined from equations

x1 + x2 = AB =
√

l2
1 + l2

2 − 2l1l2 cos α, x1/x2 = m2/m1 (32)

The last equation means that the components x1, x2 with x1 + x2 = AB

determine the position of the center-of-mass T, which evidently lies on the line
AB between points A and B CT = α.

For l1 = l2 = l and m1 = m2 = m, we get the isosceles pendulum and for
α = 0, we get the original simple mathematical pendulum.

The mathematical and physical analysis of the general triangle pendulum
shows us that this pendulum has the same behavior as the Foucault pendulum. Or,
in other words we can denote it as the triangle Foucault pendulum.

4. THE GALACTIC GYROSCOPE

The gyroscope is usually defined as a device for measuring or maintaining
orientation based on the principle of conservation of angular momentum. The
essence of the device is the spinning wheel. We will show that the planet orbiting
in the rotating galaxy is the galactic gyroscope because the orientation of the orbit
is conserved reminding the classical gyroscope.

The force acting on the planet with mass m is according to Newton law

F = −G
mM

r2
, (33)

where M is the mass of Sun, r being the distance from m to the Sun.
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The corresponding equations of motion in the coordinate system x and y are
as follows

mẍ = −G
mM

r2
cos ϕ; mÿ = −G

mM

r2
sin ϕ, (34)

or, with sin ϕ = y/r, cos ϕ = x/r ,

ẍ = −kx

r3
; ÿ = −ky

r3
, k = GM, r =

√
x2 + y2 (35)

Using x = r cos ϕ, y = r sin ϕ, we get instead of equations (35):

(r̈ − rϕ̇2) cos ϕ − (2ṙ ϕ̇ + rϕ̈)sin ϕ = −k cos ϕ

r2
(36)

(r̈ − rϕ̇2) sin ϕ + (2ṙ ϕ̇ + rϕ̈)cos ϕ = −k sin ϕ

r2
. (37)

In case that the motion of the planet is performed in the rotation system of a
galaxy the equations (36), (37) are written in the form (�z = �)

(r̈ − rϕ̇2) cos ϕ − (2ṙ ϕ̇ + rϕ̈) sin ϕ = −k cos ϕ

r2
+ 2�ẏ (38)

(r̈ − rϕ̇2) sin ϕ + (2ṙ ϕ̇ + rϕ̈) cos ϕ = −k sin ϕ

r2
− 2�ẋ, (39)

or,

(r̈ − rϕ̇2) cos ϕ − (2ṙ ϕ̇ + rϕ̈) sin ϕ = −kϕ

r2
+ 2�(ṙ sin ϕ + r cos ϕϕ̇) (40)

(r̈ − rϕ̇2) sin ϕ + (2ṙ ϕ̇ + rϕ̈) cos ϕ = −k sin ϕ

r2
− 2�(ṙ cos ϕ − r sin ϕϕ̇). (41)

After multiplication of Eq. (40) by sin ϕ and Eq. (41) by cos ϕ and after their
subtraction we get

2ṙ ϕ̇ + rϕ̈ = −2�ṙ, (42)

or,

d

dt
(r2ϕ̇) = −�

d

dt
(r2), (43)

or,

ϕ̇ = −�. (44)

It means that the angle velocity of the ellipse of a planet inside the rotating
galaxy is −� which is the opposite angle velocity of the galaxy with regard to
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vacuum of universe (Of course that the additional fundametal solution of Eq. (42)
is ϕ̇ = const/r2).

Let us only remark that here we consider the well defined galaxy as the
galaxy of elliptical form and not of the chaotic form. We do not consider here the “
galaxy rotation problem”—the discrepancy between the observed rotation speeds
of matter in the disk portion of spiral galaxies and the predictions of Newton
dynamics considering the luminous mass—which is for instance discussed in
http://en.wikipedia.org/wiki/Galaxy−spiral−problem.

5. ROTATING LHC FROM THE VIEWPOINT OF GRG

Now, the question arises what is the description of the rotation in the general
theory of relativity. If we use the the Minkowski element

ds2 = c2dt ′2 − dx ′2 − dy ′2 − dz′2 (45)

and the nonrelativistic transformation to the rotation system (Landau et al., 1988)

x ′ = x cos �t − y sin �t, y ′ = x sin �t + y cos �t, z = z′ (46)

then we get:

ds2 = [c2 − �2(x2 + y2)]dt2 − dx2 − dy2 − dz2 + 2�y dx dt − 2�x dy dt,

(47)
which is not relativistically invariant.

Frequently, the modified notation is used in the literature for the description
of the metric on the rotation Earth (Grib et al., 1987). The following tetrade system
connected with the observer is chosen. The unite vector ez lies on the prime going
from the center of rotation of the Earth to the place of the observer on the Earth.
The vector ey is oriented to the North pole and lies on the meridian, the vector ex

is perpendicular to ez and ey and it lies in the direction of the Earth rotation. The
angle velocity of basic vector is identical with the angle velocity of the Earth. The
acceleration a in the observer system is the sum of the gravitational acceleration
g and the centrifugal acceleration ac. The metrics in a such system is given by the
appropriate components of the following line element:

ds2 =
(

1 + 2z

c2
(�2R cos2 α − g)

)
(dct)2 − 2z�(dct)dx − dx2, (48)

where R is the radius of the Earth, � is the angle velocity of the Earth rotation, g

is the gravitational acceleration in the place of experiment, α is the Earth width of
the experimental arrangement.
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The metrical tensor following from the line element (48) in the first approxi-
mation is evidently given by the relations (Grib et al., 1987):

g00 = +2zg

c2
, g01 = g10 = −�

c
z cos α, g11 = −1. (49)

The correctness of the transformation between inertial and rotation system
is necessary because it enables to describe the motion of the particle and spin in
the LHC by the general relativistic methods. The basic idea is the generalization
of the so called Lorentz equation for the charged particle in the electromagnetic
field Fµν (Landau et al., 1988):

mc
dvµ

ds
= e

c
Fµνvν. (50)

In other words, the normal derivative must be replaced by the covariant one
and we get the general relativistic equation for the motion of a charged particle in
the electromagnetic field and gravity (Landau et al., 1988):

mc

(
dvµ

ds
+ �

µ
αβvαvβ

)
= e

c
Fµνvν, (51)

where

�
µ
αβ = 1

2
gµλ

(
∂gλα

∂xβ
+ ∂gλβ

∂xα
− ∂gαβ

∂xλ

)
(52)

are the Christoffel symbols derived in the Riemann geometry theory (Landau
et al., 1988).

In case that we consider motion in the rotating system, then it is necessary
to insert the metrical tensor gµν , following from the Minkowski element for
the rotation system. The construction of LHC with orbiting protons must be in
harmony with equation (51) because orbital protons “feels” the Coriolis force from
the rotation of the Earth.

The analogical situation occurs for the motion of the spin. While the original
Bargmann-Michel-Telegdi equation for the spin motion is as follows (Berestetzkii
et al., 1988)

daµ

ds
= 2µFµνaν − 2µ′µvµFαβvαaβ, (53)

where µ′ = µ − e/2m and aµ is the axial vector, which follows also from the
classical limit of the Dirac equation as ψ̄iγ5γµψ (Rafanelli et al., 1964; Pardy,
1973), the general relativistic generalization of the Bargmann-Michel-Telegdi
equation can be obtained by the analogical procedure which was performed with
the Lorentz equation. Or,(

daµ

ds
+ �

µ
αβvαaβ

)
= 2µFµνaν − 2µ′µvµFαβvαaβ, (54)
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where in case of the rotating system the metrical tensor gµν must be replaced by
the metrical tensor of the rotating system. Then, the last equation will describe the
motion of the spin in the rotating system.

The motion of the polarized proton in LHC will be described by the last
equation because our Earth rotates. During the derivation we wrote �

µ
αβvαaβ and

not �
µ
αβvαvβ , because every term must be the axial vector. In other words, the last

equation for the motion of the spin in the rotating system was not strictly derived
but created with regard to the philosophy that physics is based on the creativity
and logic (Pardy, 2005).

On the other hand, the Eq. (54) must evidently follow from the Dirac equation
in the rotating system, by the same WKB methods which were used by Rafanelli,
Schiller and Pardy (Rafanelli and Schiller, 1964; Pardy, 1973). The derived BMT
equation in the metric of the rotation of the Earth are fundamental for the proper
work of LHC because every orbital proton of LHC “feels” the rotation of the
Earth and every orbital proton spin “feels” the Earth rotation too. So, LHC needs
equations (51) and (54) and vice versa.

6. DISCUSSION

We have presented the Lagrange theory of the noninertial classical systems
and we applied the theory to the so called Foucault pendulum, the isosceles
triangle pendulum with two equal masses and to the triangle pendulum with the
nonequal legs and masses. We have shown that Every pendulum is suitable for
the demonstration of the rotation of the earth. The isosceles triangle with two
equal masses and the triangle with the nonequal legs and masses fixed to the
ball swimming on the water was not considered. The article is the modified and
improved version of the previous author text (Pardy, 2006).

We know from history of science that Galileo Galilei (1564–1642)—Italian
scientist and philosopher—studied the mathematical pendulum before Foucault.
While in a Pisa cathedral, he noticed that a chandelier was swinging with the
same period as timed by his pulse, regardless of his amplitude. It is probable,
that Galileo noticed the rotation of the swinging plane of the pendulum. However,
he had not used this fact as the proof of the Earth rotation when he was con-
fronted with the Inquisition tribunal. Nevertheless, his last words were “E pur si
muove.”

For the demonstration of the galaxy rotation, we have analyzed the elliptical
motion of our planet and we have shown that the orbital motion of our planet can
be used as gigantic gyroscope for the proof of the rotation of our galaxy in the
universe. The orbit of our planet with regard to the rest of the universe has the
stable stationary position while the galaxy rotates. The orbital planetary stability
can be used as the method of the investigation of the rotation of all galaxies in the
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rest of the universe. To our knowledge this method was not still used in the galaxy
astrophysics.

It is possible to consider also the rotation of the Universe. If we define
Universe as the material bodies immersed into vacuum, then the rotation of the
Universe is physically meaningful and the orbit of our planet is of the constant
position with regard to the vacuum as the rest system. The idea that the vacuum
is the rest system is physically meaningful because only vacuum is the origin of
the inertial properties of every massive body. In other words, the inertial mass
m in the Newton-Euler equation F = ma is the result of the interaction of the
massive body with vacuum and in no case it is the result of the Mach principle
where the inertial mass is generated by the mass of rest of the Universe. At present
time, everybody knows that Mach principle is absolutely invalid for all time of the
existence of Universe.

The theory discussed in our article can be also applied to the pendulum
where the fiber is elastic. The corresponding motion is then described by the wave
equation with the initial and boundary conditions.

It is evident that there are many physical problems, classical and quantum
mechanical considered in the rotation system. Some problems were solved and
some problems will be solved in the future. Let us define some of these problems.

Mössbauer effect in the rotating system, Schrödinger equation for a particle in
the rotating system, Schrödinger equation for the pendulum in the inertial system
and in the rotating system, Schrödinger equation of H-atom in the rotating system,
Schrödinger equation of harmonic oscillator in the rotating system, the Čerenkov
effect in the rotating dielectric medium, the relic radiation in the rotating galaxy,
the N-dimensional blackbody radiation in the rotating system, conductivity and
superconductivity in the rotating system, laser pulse in the rotating system, Berry
phase, Sagnac effect, and so on. All these problems can be formulated classically,
or in the framework of the general theory of relativity with the �-connections
corresponding to the geometry of the rotating system. We hope that the named
problems are interesting and their solution will be integral part of the theoretical
physics.
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